

Turbulence Detection & Mitigation Element

Weather Accident Prevention Second Annual Review June 5-7, 2001

Rod Bogue NASA Dryden Flight Research Center

Briefing Outline

Organization

Scope of Turbulence Effort

Background

Turbulence Detection & Mitigation Program Metrics

Approach

Turbulence Team Relationships

WBS Structure

Deliverables

TDAM Changes

FY-01 Results/Accomplishments

Out-year Plans

Element Status

Aviation Safety Program Organization

Scope of Turbulence Effort

- Turbulence from Natural Atmospheric Processes
- Parts 121, and 91 (Scheduled Carriers, Commuters & GA)
- Tactical (Enroute)
- Both Avoidance & <u>Encounter</u>
 <u>Mitigation*↓</u>
- Flight Deck Integration*↑

Note: $* \downarrow =$ Reduced effort, $* \uparrow =$ Starting effort.

Background

- Turbulence Costs
 - Primary Cause of In-Flight Injuries (9 encounters/24 injuries per month)
 - Cost estimated at >\$100M/yr. for airlines
- Turbulence Initiators
 - Convective Storms (within and as far as 40 miles away from visible clouds in clear air)
 - Jet Stream (at confluence of multiple streams and near boundaries)
 - Mountain Wave (upward propagating from disturbances near the surface)

Turbulence Detection & Mitigation Program Metrics

- WxAP Objective # 3: Provide commercial aircraft sensor with 90% probability of detection of severe Convective and Clear Air Turbulence thirty seconds to two minutes before encounter.
- WxAP Milestone #2: Flight demonstrate certifiable forward-looking on-board turbulence warning system with Type-I and Type-II error probability commensurate with airborne wind shear technology (TRL/IRL of 7/4)

Approach

- Build a Turbulence Team from Industry, Academia, and Government to address requirements, approaches, and solutions
- Utilize the Commercial Aircraft Safety Team (CAST) to determine requirements for Air Carriers (http://www.cygnacom.com/turbulence/)
- Address Air Carrier Issues with Technology Approaches with assistance from FAA Rule-Making, and Improved Procedures
- Address GA Issues with improved Weather Products
 Disseminated through Aviation Weather INformation

Turbulence Team Relationships

WBS Structure

- <u>Requirements Definition</u> (CAST)
- Severe Events Database
- <u>Hazard Metric</u> <u>Development</u>

- <u>Sensor Performance</u> Assessment
- Sensor Development
- Algorithm Development

 <u>Demonstration &</u>

 Verification

Mitigation/Flight Deck Integration

- <u>Turbulent Flt. Control</u> <u>Algorithm</u>
- Flight Deck Display Integration
- Assess Mitigation Options

Major Deliverables/Products

- Turbulence Characterization
 - Validation of In-situ Algorithm
 - Turbulence Hazard Metric
- Detector Technology
 - Radar (software)
 - Lidar (hardware/software)
- Encounter Mitigation Technology
 - Assessment of Conventional Aircraft Control Authority
- Flight Deck Integration
 - Display Integration

Element Changes

- Program Changes
 - Elimination of Forecasting/Nowcasting WBS
 - De-scope of Mitigation
 - Initiation of Flight Deck Integration
- Staffing Changes
 - Level III Deputy
 - Bruce Kendall interim
 - Jim Watson
 - Level IV
 - Neil O'connor Turbulence Characterization Lead
 - Robert Neece Detection & Mitigation Lead
 - Phil Schaffner Radar Principal Investigator
 - Ivan Clark & Phil Gatt Lidar Co-principal Investigators

Element Accomplishments

- Turbulence Characterization & Sensor Development
 - Research Radar Flight Experiments
 - 3 Flights (15 hours)
 - Predicted atmosphere along flight path
 - Verified turbulence in-situ algorithms
 - Established relationship between rms aircraft g-load and radar observables
 - CDR for B-757Lidar Installation
- Radar Flight Sensor Certification/Flight Deck Integration
 - Participated in NASA-FAA-Industry Workshops (3) for Forward Looking Turbulence Sensor Certification*
 - Selected and modeled 4 turbulence encounters for candidate sensor verification & certification

Note: * indicates item will not be covered later in detail

Element Accomplishments (cont.)

- Turbulence Mitigation
 - Flight Control Report (Boeing)
 - Phase 2 SBIR for Feedforward Active Encounter Mitigation (CTI)*
- Guidance Activities
 - Commercial Aviation Safety Team
 - Completed Turbulence Joint Safety <u>Assessment</u> Process (30 Interventions
 - Technology Development, Procedures, Training
 - Chartered Turbulence Joint Safety <u>Implementation</u> Process
 - Prioritized Interventions Selected for Implementation
 - Developed Projects Identified Outputs
 - Secure Cabin Exercise
 - Established Team FAA (CAMI), Airlines (5), Flight Attendant Organizations(2), ARI Consultant
 - Exercise Planning in Progress

Element Plans

- Turbulence Characterization & Sensor Development
 - Research Radar Flight Experiments with real-time
 Radar Algorithm in operation (Early FY-02 and Late FY-02)
 - Research Lidar Flight Experiments
 (Summer FY-01 on DC-8,
 Later FY- 02 on B757)
- Radar Flight Sensor Certification
 - Support NASA-FAA Certification Team effort with flight tests and algorithm validation activities
 - Continue analysis of turbulence encounters for sensor verification & certification

Element Plans (cont.)

- Turbulence Mitigation
 - Flight Control Assessment (Boeing)
 - Support Phase 2 SBIR for Feedforward Active Encounter Mitigation

- Commercial Aviation Safety Team
 - Complete Turbulence Joint Safety <u>Implementation</u> Process
 - Refine Projects and Outputs
 - Transition Projects to CAST Management
- Secure Cabin Exercise
 - Conduct wide-body exercise at CAMI in September 01
 - Develop Plans and conduct narrow-body exercise in FY-02

Summary - Status of Elements

- Turbulence Characterization
 - Accident analysis developing robust cases for certification
 - Developing turbulence weather analysis models
- Detection
 - Radar flight tests in December provided promising results for detecting turbulence in the vicinity of convective activity
 - Lidar flight tests in FY-01expected to confirm/validate performance at cruise altitude
- Encounter Mitigation
 - Promising assessment of mitigation control options
- Flight Deck Integration
 - Planning for display integration with NASA-FAA Certification Team

Supplementary Charts

For supporting questions

Model for Reducing Air Carrier Turbulence Accident Rate

